UNIVERSITY of VIRGINIA

LANDSCAPE MASTER PLAN
At the University of Virginia, Thomas Jefferson created an icon of American campus planning, a village of modest one- and two-story buildings around the perimeter of a green commons, open to mountain views as well as new ideas of pedagogy. This reciprocity of form and idea provides both the “origin myth” and future direction for planning and design at this historic campus, the only American university to be designated by UNESCO as a World Heritage Site.

Described by its Founder as “a bantling of forty years birthing,” the University of Virginia benefited from Jefferson’s mature vision of educational reforms. The physical design of Jefferson’s “academical village” also reflects his lifelong study of architectural and landscape design. The power of this special place derives from the seamless integration of architecture into the landscape. Jefferson’s crowning achievement, then, is a legacy that urges special stewardship for the landscape so central to his utopian vision.

Since the time when Socrates and Plato held class out-of-doors at the Academy of Athens, immortalized in classical literature as the “groves of Academe,” the image of a garden as the appropriate setting for contemplation and scholarly discourse has taken firm root in Western culture. Jefferson himself was no doubt aware of these classical precedents when he gave the landscape such a prominent role in the design of his model University: the density of buildings in relation to open space was low compared to other contemporary institutions like Harvard and Princeton. Also, the buildings were sited to take maximum advantage of the Piedmont terrain, and each professor’s residence was afforded a private walled garden. All these special features of Jefferson’s design led landscape architect Warren Manning to call UVA...
the “Garden University of America” in a 1908 report. Subsequently, in 1999, the American Society of Landscape Architects (ASLA) awarded the University a centennial medallion for the “outstanding landscape architecture” of the historic core.

In the course of deliberations on the update of the University’s Master Plan, the planners came to the conclusion that the grounds were the most memorable aspect of the University. At its heart lies the Lawn itself, arguably one of the world’s great public spaces. The magnetism of the Lawn is so compelling that it often blinds us to the needs of the more ragged and ill-defined corners of the University landscape. That is the situation this Landscape Master Plan seeks to redress by articulating the landscape “scaffolding” that should structure future University development rather than the reverse.

The Office of the Architect for the University retained the services of Ayers Saint Gross Architects and Planners and Michael Vergason Landscape Architects to undertake this “Landscape Master Plan” in 1997. This project, as well as a “Strategic Plan for Water Resources Management,” was conducted in conjunction with the update of the University Master Plan so that landscape values could be fully incorporated into future development plans. The consultants worked closely with many constituencies on grounds, seeking advice from the Department of Landscape Architecture faculty, grounds maintenance and utilities departments at Facilities Management, and the Arboretum and Landscape Committee. The latter, as with all other matters related to the University landscape, played a key role in shaping the document.

We who were engaged in drafting this plan have come to appreciate John Stilgoe’s observation in Common Landscape of America that “landscape is a slippery word.” Landscape is like ether, it oozes between buildings and objects in a way that is hard to understand let alone corral and codify. Usually not the object of our attention, the quality of outdoor space often goes unappreciated until it is gone. Early in the process, Beth Meyer pointed out the semantic pitfall of the simple term “open space,” which connotes something not fully actualized or realizing its full potential. It has been a prime objective of this study to articulate those areas which are “full” in their open condition, those that could use remediation, and those which are best filled with buildings or structures to frame other landscape spaces, making them better in turn. The plan also reveals the manner in which the natural systems of the landscape – landform, watercourses, and woodlands – provide a “green” armature to structure future development.

Mary Hughes, ASLA
University Landscape Architect
UNIVERSITY OF VIRGINIA LANDSCAPE MASTER PLAN

TABLE OF CONTENTS

A. **INTRODUCTION** .. 1

B. **EXECUTIVE SUMMARY** 3

C. **ANALYSIS** .. 9

 1.0. **NATURAL SYSTEMS** 9
 1.1 Landform ... 9
 1.2 Water .. 10
 1.3 Vegetation ... 13

 2.0. **CIRCULATION SYSTEMS** 20
 2.1 Pedestrian Circulation / Network Of Paths 20
 2.2 Bicycles ... 20
 2.3 Streets ... 22
 2.4 Boundaries & Thresholds 24

 3.0. **OPEN SPACE** .. 26
 3.1 Gathering Places 26
 3.2 Views and Vistas 26
 3.3 Sacred Places .. 28

D. **RECOMMENDATIONS** ... 31

 1.0. **NATURAL SYSTEMS** 32
 1.1 Water Resources / Riparian Recreation 32
 1.2 Connected Woodland Corridors 34

 2.0. **CIRCULATION SYSTEMS** 36
 2.1 Pedestrian Paths and Bicycles 36
 2.2 Shaded Street Corridors 42
 2.3 Thresholds & Arrival 47

 3.0. **OPEN SPACE & SPECIAL PLACES** 50
 3.1 Special Places .. 50
 3.2 Sacred Landscapes 53
The Academical Village of the University of Virginia is an exemplary model of coherent planning in the integration of landscape and buildings. It has become a powerful singular icon of a timeless place, embodying countless patterns of spatial design and articulation. As the University has grown, the delicate integration of landscape and buildings has diminished.

Through this Master Planning effort we seek to reassert the balance between landscape and buildings as a timeless model of simple physical beauty to mark the past, present, and future development of the University; provide spiritually uplifting places for contemplative reflection, interaction, and exchange of ideas for faculty and students; and create a biologically wholesome laboratory for use as a tool for teaching ecology and environmental responsibility.

In essence the landscape should be a connector, linking the campus socially, as a “landscape for learning,” physically, as a spatial system and, temporally, as a link to the past, present, and future.

The goal of this study is to create a landscape master plan that will serve as a general framework for future physical decision making at the University of Virginia. This framework should provide a stable armature around which the University grows, as an organizing structure that re-establishes the balance of buildings and landscape.

In the broadest sense the Landscape Master Plan should serve:

- to reinforce the long range vision for the University as represented by the Master Plan, and,
- to provide a clear framework for the day-to-day decisions related to project development, small landscape improvements, and general upkeep of the Grounds.

More specifically, the objective of the effort is to produce a plan that functions as a strong open space framework for the University. This framework should allow the University to grow and become a landscape in keeping with the mission of the University as a “community of learners” dedicated to learning as a life long process.

The process began with an inventory of the overall campus natural systems and proceeded into a more detailed review of the landscape and open spaces at the precinct level, from which three findings or core observations emerged. From these, seven landscape recommendations were developed. A brief description of the Observations and Recommendations follows in the Executive Summary.
OBSERVATIONS

The Observation Phase was an outgrowth of the analysis and identified campus strengths, weaknesses and opportunities for improvement. The planning and design team looked at the University’s natural and built systems across the 1000 acres of the Grounds.

Three primary observations emerged:

Observation One – Woodlands and water are important assets to the campus.

The natural systems and soft green setting are essential components of the character and quality of the University. During recent years the Grounds have experienced a steady decline in the quality and presence of deciduous woodlands. At the same time its natural streambeds and tributaries have been filled and piped and the quality of the water has deteriorated. Immediate access to natural woodlands and the presence of water courses, once integral parts of the experience of the Grounds, have diminished and need to be restored.

Observation Two – Public streets have great potential as connectors and as part of the arrival experience.

The primary streets of the University, both public and private, are important resources in making connections between precincts. However, in most cases, they are corridors designed primarily for cars, not comfortable places for people on foot or on bicycles. Entry to the University is often unclear and/or unsightly. New dedicated bike lanes form the framework of a system in need of completion. While entry to the Grounds is unclear, there are currently numerous examples of gates, walls, woodlands, bridges, water, and plantings that can be used to enrich the perimeter boundaries and arrival sequence.

Recommendation: Improve pedestrian and bicycle connections within the street corridors connecting University precincts and enrich the experience of arrival.
EXECUTIVE SUMMARY

Observation Three – Open spaces and places are sufficient in quantity but not quality.

Although there is a sufficient amount of open space on the Grounds, its treatment is often insufficient. There is a lack of properly scaled, welcoming outdoor spaces that encourage informal gathering, conversation, and exchange of ideas. Faculty and students complain of this deficiency. It is important that we create more memorable places for gathering.

It is also important to recognize that the landscape has an inherent economic value apart from its use as space for future buildings. The landscape is a vital part of the Grounds' iconography, and it is critical to the enjoyment of students, faculty, staff, and visitors. We need to protect the cultural heritage and landscape of the University. These are unique attributes, critical to its future. Not only the Historic Central Grounds, but the entire campus landscape has tremendous value as a link to the past, the present, and the future. Interviews with students confirm that the decision to attend the University was often based on the landscape. We can be sure that a certain sentimentality for its beauty carries forward into alumni fund raising.

Recommendation: Improve the quality of the open space network to create places for people and ideas.
RECOMMENDATIONS

Seven recommendations emerged from the Observation Phase. These Recommendations respond directly to the observations and are organized below under three parallel headings. Part I: Natural Systems summarizes recommendations related the importance of woodlands and water. Streets and their potential as connectors is discussed under Part II: Circulation Systems. Part III: Open Space and Places outlines strategies for preserving and improving the quality of open space on the Grounds. Recommendations are discussed in more detail in the body of the report.

1.0 NATURAL SYSTEMS

1.1. Water Resources / Riparian Recreation
Link riparian corridors with recreational uses by restoring streams and stream corridors in conjunction with active and passive recreation through a hiking/biking trails system. Re-create the natural setting of the Dell by bringing Meadow Creek back to the surface, and restore ponds and stream channels in the Dell, Nameless Field, Carr’s Hill Field and Lambeth Apartments. Introduce a system of walking, jogging, biking trails and recreation sports with the stream valley improvements. Use these improvements as a way to improve treatment of storm water on the Grounds. These recommendations are discussed in detail in the University’s Water Resource Strategic Plan, prepared by Andropogon Associates and Thomas Cahill.

1.2. Connected Woodland Corridors
Preserve and extend the University’s woodlands by re-establishing, connecting, and protecting the woodland corridors. Preserve the remaining forests on the North Grounds and the upland forest on Observatory Hill. Reduce lawn maintenance on steep slopes through the reforestation of slopes such as those above Carr's Hill Fields and Nameless Fields.
2.1. Bicycles and Pedestrian Paths
Reinforce the ‘Groundswalk’ by creating a connective pedestrian and bicycle network to promote walking and biking.

Develop a pedestrian-scaled spine or ‘Groundswalk’ along the ridgeline of McCormack Road, including a pedestrian bridge over Emmet Street that will link to the North Grounds of the University.

Organize a network of paths around the Groundswalk characterized by high intensity uses, seatwalls, and gathering spaces, to better connect the North Grounds and Health Sciences to the Central Grounds, and the North Grounds and West Precinct. Make connections to the Riparian Trails Network.

2.2. Shaded Street Corridors
Enhance the streets for people in order to improve the quality of university streets as comfortable and attractive places for people.

Create shaded street corridors that compliment and enrich the Groundswalk and riparian recreation systems, by improving the image of the University and the comfort of the pedestrian. Provide continuous walkways, consistent street tree plantings, and dedicated bike lanes to increase walking and bicycling. Use street tree plantings to clarify the character, quality, and identity of each street.

2.3. Thresholds and Arrival
Enrich the arrival/entry sequence to help the clarity of University presence and image.

The arrival/entry to the Grounds is and should remain gradual through a sequence of softly defined thresholds made of various combinations of gates, walls, woods, bridges, water, and plantings, providing a sense of arrival similar to that which occurs upon reaching the Central Grounds.
3.0 OPEN SPACE AND PLACES

3.1. Places
Enrich the gathering spaces of the University. Develop places that promote the concept of a “landscape for learning.”

Distribute a range of places throughout the University. These should include places for: ceremony, gathering, retreat, play, and passage. Recognize that places that fall into multiple categories are the most successful. Concentrate places of gathering related to informal exchange and interchange along the Groundswalk or in the primary gathering spaces of the University and its precincts.

3.2. Sacred Landscapes
Preserve and enhance the legacy of the University.

Define sacred landscapes or areas of the Grounds that need to be preserved and sustained as instrumental to the character and quality of the place, especially the first tier of sacred areas such as the Lawn, the Cemetery, Monroe Hill, woodlands of Observatory Hill, and the second tier such as the Dell, Lambeth Colonnade and Field, Morea, and the Miller Center.

In the same way the Lawn provides structure for the Academical Village, the three components of the landscape plan – Natural Systems, Circulation Systems, and Open Spaces and Places – should provide a flexible open space framework to guide the development of the University. The Groundswalk and the recreational paths form a braided and interwoven system of connections linking the campus precincts, while the street corridors tie the network together.
1.0 NATURAL SYSTEMS

Analysis of the University was performed by evaluating the natural and built systems that have a direct bearing on the Landscape Master Plan. It is not intended to be an in-depth study, but to provide general background information to inform the reader of the natural and manmade patterns that shaped and directed the development of the University.

A majority of the analysis focuses on the vegetative and open space patterns that provide the rich and memorable places of the University but are under increasing threat due to University expansion.

1.1 Observatory Hill

1.1. Landform

The landform of the region reminded early settlers of the foothills of southern Europe. The Italian word, "Piedmonte," means 'foot of the mountain.' It is the same language Thomas Jefferson used to describe the natural features of his homestead at Monticello, which provided the source and landscape context for much of his architectural inspiration and vision for the University.

UVA is located at the western edge of the central Piedmont. The Piedmont is a narrow region that stretches for over one thousand miles from the Palisades of New York to central Alabama. The characteristic of this landform is gently rolling hills dissected by quiet creeks and streams. The Piedmont is a peneplain, an area not yet worn flat by erosion. The structure of the underlayment is comprised predominately of weathered and eroded crystalline rock (largely granite), which helps to explain the Piedmont's distinctive features: rapids along the fall line of its rivers, soil types, and the monadnocks or isolated hills of resistant rock rising above the peneplain.

Such a grouping of prominent isolated hills within the Piedmont plain of central Virginia provides the physical setting for the University. These monadnocks of higher knolls, hills, and upland terraces located between the southern mountain chain and the Blue Ridge Mountains facilitate vistas and view corridors. Both local visible landmarks and the distant mountains beyond are defining characteristic of the University, an enduring setting that established the iconography of the Rotunda, the Lawn, and University landscape as a whole.
Jefferson’s keen agrarian mind understood the relationship between buildings and water, and how important it was to have an adequate supply of ‘good water’ and allow room for growth so as not to degrade the resource. Thus, it was not by accident that by the time the University opened in 1823, a majority of the 392 acres included securing the headwaters Meadow and Moore’s Creek on Observatory Hill.

The soils of the Piedmont are primarily residual soils, formed in place, through the process of the underlying decomposed and weathered rock (saprolites) mixing with the decaying organic, surficial matter. As a result, the soils of the Piedmont are generally clay with significant range of depths. Most of the campus is comprised of the Hayesville-Ashe-Chester Group, a deep and moderately deep well-drained soils with a clayey or loamy sub-soil, formed from material weathered from granite and gneiss. The far western part of the campus, just inside Route 29 and beyond is the Braddock-Thurmont-Unison Group, consists of deep well-drained soils formed from the colluvial terraces of the Blue Ridge and Piedmont.

1.2. Water

From its inception, the relationship between water and landform played an important role in the early development of the campus. Jefferson’s own specifications for eligible sites required land that was “high, dry, open, furnished with good water and nothing in its vicinity which could threaten the health of the students.” Jefferson had come to abhor the low, damp, and unhealthy conditions he encountered at his alma mater William and Mary.
Today, the University occupies most of the headwaters for the tributaries of Moore’s Creek to the south, and the Schenks Branch of Meadow Creek to the north. The drainage divide between these streams winds it’s way over Observatory Hill and passes through the Lawn. The University controls all of the water resources that impact the campus and the downstream water quality of the surrounding region. See Fig. 1.2 at left.

As the University expanded, these tributaries and streams were encroached upon and degraded. Large portions are now buried underground in culverts and pipes. Large areas of impervious surfaces of roads, parking lots, and buildings inhibit rainwater from returning to the soil and replenishing groundwater and stream flows. Significant areas of woodlands have been cleared and the forest edge pushed back, promoting erosion during storm events allowing sediments and pollutants to be carried down stream impacting adjacent communities.

Water was an important part of life at the University in earlier years. Much of this original natural beauty and environmental health has been lost.

Concurrent with the development of the Landscape Master Plan, the Strategic Plan for Water Resource Management was initiated. This study analyzed the hydrologic systems; evaluated the impacts of existing built systems, structures, paving and drainage, and formulated methods to reduce both total runoff volumes and pollutant loads. A majority of the mapping used the Geographic Information System (GIS) data integrated with the University’s mapping system. Both will be used for future campus planning.

Restoring the health and improving the visual quality of these streams is a goal of both the Water Resources Strategic Plan and the Landscape Master Plan. The healing process will not be easy as a majority of the streams have been disturbed, diverted, plugged, channeled or piped.

The challenge of both plans will be to foster new ethics and approaches for landscape and water management within the University. Maintaining the natural water balance is fundamental to water resources planning and is inextricably linked to the vegetative systems. Preserving the natural vegetation as well as restoring landscape systems will be an integral part of mitigating both the quantitative and qualitative impacts of storm water. Together, both plans advocate not only maintaining and enhancing the natural streams and corridors, but also restoring the natural water flows and riparian landscape. As this occurs over time, the environmental health and natural beauty of the University will be renewed and reinvigorated.
1.3 Existing Woodland Patterns
1.3. Vegetation

The current vegetative cover of the forested areas of the University is in various stages of multiple secondary successional growth. The pattern of vegetative succession throughout all of the Piedmont is a generally predictable series of plant associations succeeding one another until the combination of plants stabilizes into a self-perpetuating ecological community or climax forest.

One of the remarkable characteristics of the Piedmont is its relatively homogeneous climate. This pertains both to temperature and moisture, which are the primary indicators or factors of climate. Although the temperature extremes during the year can range over a hundred degrees, it is the average temperature of the growing season, between 70° and 80°, that is most significant. This measure is important for plant selection and cultivation. Those warm moderate temperatures over a long growing season throughout the Piedmont more than offset the extremes of winter.

Moisture in the form of annual precipitation is evenly distributed. The Piedmont receives a generous amount of rainfall averaging from 40 to 50 inches annually. More than half of that precipitation arrives during the important growing season. Considered together, temperature and moisture are known as relative humidity, which is the capacity of air to hold moisture. Combined with the average wind speeds (a moderate 6 to 8 m.p.h.), relative humidity has a controlling effect on evaporation. The Piedmont has a rather high average relative humidity of about 50% throughout the year.

These climatological factors, often taken for granted, are the primary reasons for the overall homogeneous vegetative character of the Piedmont forests, and they create its diversity as well. In describing the woodland communities of the University in terms of soil moisture levels, the USDA recognizes seven soil moisture classifications, ranging from very dry (xeric), to moderate (mesic), to very wet (hydric). However, the extremes of the classification are rare within the Piedmont region.

As noted, almost all of the Piedmont receives equal amounts of annual rainfall, so the effects of slope, solar orientation, soil texture, porosity and vegetative cover are the major factors effecting soil moisture. The primary plant types for the University are within the middle three classifications; dry-mesic (well drained soils), mesic (moderately drained soils), and wet-mesic (somewhat poorly drained soils). These classifications are typical of Observatory Hill and the remnant woodlands found within the University.
1.3.2 North Grounds

The other relatively large area of woodland within the University is found in the North Grounds. Although not as pristine as Observatory Hill, these woods, without the dry mesic or xeric plants, have many of the same other attributes as Observatory Hill. This area has also been impacted by the pressures of University expansion, with notable effects from storm water management.

Three mature tree groups comprise the slopes of the North Grounds. Mature oak groups are found on the upper and south facing slopes along Barracks Road, the poplar-oak group to the west flanks the oak-beech group that follows the middle and lower slopes along the streams or where damp hydric soils are present. The trees within these forest types range from 20' to 36' DBH sizes and are in very good condition. The understory is also comprised of red maple, black gum, holly, and dogwood with bands of mountain laurel. Two sizable storm water management ponds (SWMP) located within these woods have adversely affected the visual quality of the North Grounds. Unfortunately, trees along the fringes of these ponds are in various stages of decline.

1.3.3 Remnant Woods

The dominant character of these woodland habitats is due to cycles of retreat and advance caused by the impacts of development. Several smaller patches of remnant woodlands are present along some of the drainage corridors and creeks such as the Dell and along Copeley and Massie Roads. The Dell is comprised of the poplar group, with floodplain group of poplar, sycamores and red maples, to the west located at the base of Observatory Hill. Along Copeley, within the married student housing, is a good stand of mature poplar-oak woodlands, with large white oaks scattered between the homes and parking lots, with smaller stands of mature poplar group towards Emmet Street along the drainage swale and stream bed. Again, a small SWMP has encroached into the intermediate poplar mixed group comprised of red maple, oaks, sweetgum and remnants of native white and Virginia pines. These average between 9” and 19” DBH and are still in good to fair condition.

1.3.4 Evergreen Trees

While the total percentage of evergreen trees relative to deciduous trees within the University is small, their visual impact is disproportionately large. They are located generally along the edges of the campus. Due to their strong visual contrasts, evergreens create strong first impressions.

On the Grounds, they reinforce order as defined by principal streets. The dominant evergreens found within the University are white pines, southern magnolia, and loblolly pines. The southern magnolia is particularly impressive along the entry into the University along Emmet Street. Subordinate evergreen species are spruce and cedars.
1.3 Existing Plant Types
Other prominent groupings of evergreens are located at the intersections of University and Jefferson Park Avenue at the Lewis and Clark Memorial and along Jefferson Park Avenue at the rear of Health Sciences at McKim Hall.

1.3.5 Cultivated Landscape

Jefferson viewed garden design as an extension of the beauties of nature. He was particularly fond of the English landscape with its winding walls, serpentine rivers, and all sorts of curvilinear objects. Jefferson studied the works of William Hogarth who referred to the serpentine line as the ‘line of grace.’ Serpentine walls are an iconic element of the Pavilion gardens.

1.3.6 Street Trees

Street trees are part of the cultivated landscape; due to their important visual and place-making abilities along roadways, they take on an even more significant role in forming the landscape character of the University. With the exception of Emmet Street, with its extensive plantings of southern magnolias, the current street tree planting in and around the University is irregular and spotty with no predominant theme or species. A brief summary of the street tree planting of this primary streets of the University follows.

Alderman Road: As Alderman Road stretches south, passing Scott Stadium, it is dominated by the woodlands of Observatory Hill, along the west curb line. Here, the lawn slips beneath informal groupings of oak and tulip poplars, while on the stadium side, a more regular street tree planting of London plane trees occurs.

Emmet Street: A staccatic rhythm of southern magnolias and London planes are the predominant tree plantings which is interrupted in numerous places with patches of remnant woodlands of tulip poplars, augmented with red maple, black gum, and dogwood understory. Towards the end of the street, large white pines flank each side of the McCormick Street bridge abutments.
While total percentage of evergreen trees is small relative to deciduous, visual impact is disproportionately large. Evergreens create strong first impressions and reinforce order of the Grounds as defined by principal streets.
1.3.6 Street Trees along McCormick Road

Jefferson Park Avenue: Evergreens of white and loblolly pines with southern magnolias form both bookends and accent plantings along this street. These evergreens form the dominant and significant tree groupings while deciduous trees of oaks and planes infill the remaining portions of the street.

Massie Road: The lower road portion contains regular plantings of plane trees and sweet gums, transitioning into the deciduous woodland of the North Grounds of mature oaks and poplars. Around University Hall, are groves of tulip poplars in the southern quadrants of the athletic quad.

McCormick Road: Plantings on this street include oak and ash allees. The woods of Observatory Hill drift across Alderman Road anchoring the west end. The woods of Carr’s Hill terminate at the north end. The street is punctuated by the mature white pines at the Emmet Street bridge, the large expanse of turf and trees at Monroe Hill and Alderman Library quad, and the remnant oak woodland of Carr’s Hill.

University Avenue: Evergreens of spruces, white and loblolly pines, anchor the edges of the approach to the University and the Rotunda. Beyond, as a backdrop, informal groupings of red maples, plane trees and oaks, sweep up the woodland slope of Carr’s Hill. A majestic stand of London plane trees mark the point of arrival at the crest of the hill, with understory plantings of dogwoods, magnolias, and azaleas.
KEY
Asp Abies species
AR Acer rubrum
ASi Acer saccharinum
ASu Acer saccharum
Csp Cedar species
CF Cornus florida
CS Catalpa speciosa
Fsp Fraxinus species
GB Gingko biloba
GD Gymnocladus dioicus
Jsp Juniperus species
JV Juniperus virginiana
LT Liriodendron tulipifera
LS Liquidambar styraciflua
Msp Malus species
MD Mixed deciduous
MG Magnolia grandiflora
Psp Pinus species
Prsp Prunus species
PA Platanus x acerifolia
PC Pyrus calleryana
PO Platanus occidentalis
PS Pinus taeda
Qsp Quercus species
QA Quercus alba
QR Quercus rubra
RB Robinia pseudoacacia
Tsp Tsuga species
TD Taxodium distichum

LEGEND
- Magnolia grandiflora
- Quercus species
- Fraxinus species
- Needle leaf evergreens
- Mixed deciduous
- Unidentified deciduous
- Formal planting

1.3.6 Existing Street Tree Species
2.0 CIRCULATION SYSTEMS

2.1. Pedestrian Circulation/Network of Paths

The network of pedestrian paths within the Central Grounds is strong and well-defined, offering numerous opportunities of path types and connections. This rich texture provides multiple choices of routes with intermediate goals and provides a beautiful model for the remainder of the University.

Connections from the Central Grounds to the West Precinct are strong. Connections are weak between the Central Grounds and Health Sciences and North Grounds. The link between North Grounds and the western Science Precinct is tenuous with few choices and intermediate goals along Alderman Road.

Pedestrian safety is also of paramount concern. Based on discussions with campus safety officers it appears that as the number of path types and choices decrease the degree of safety, both in actual and perceived terms, decreases.

Major pedestrian conflicts occur at the crossings of Emmet Street, University Avenue and Alderman Road. There are pedestrian conflicts along Jefferson Park Avenue, both at the crossing to the parking areas as well as along the northern portions of the street where no sidewalk is present. Other pedestrian safety concerns occur along McCormick Road, where the walkways are too narrow for the pedestrian volume.

2.2. Bicycles

In 1993, the Office of the University Architect prepared a Bicycle Master Plan with numerous recommendations for routes within the campus connecting with the city and county routes. The principle routes of the University system are the Rugby-McCormick-Alderman Road Corridor for the Central and West Grounds, the Copeley-Massie Corridor for the North Grounds, and the Perimeter Drive Corridor for the Health Sciences Center. The plan recommended heavy reliance on the routes to be developed as shared roadway lanes with auto traffic.

In addition, the city has a very effective bike advocacy group. A number of roads in and around the University have been re-striped to include dedicated bike lanes within the carriage ways. Notable are the new bike lanes along Rugby Road and University Avenue, Emmet Street, West Main Street and Arlington Boulevard. Bike lanes are also planned for Jefferson Park Avenue.

The bicycle master plan notes that even though bikes on roads are threatened by cars, bikes on paths are a greater threat to pedestrians. The alternative of ‘bicycle only paths’ is severely limited due to heavy pedestrian cross traffic within the core campus. Currently, University policy restricts riding on ‘sidewalks’ (walks parallel to roadways). The conflicts between pedestrians and bikes is growing as the volume of these two use groups increases. As a result, there needs to be a better method of designating ‘Walk Your Bike Zones’ and bicycle routes within the high conflict areas of the campus.
2.1 Existing Path Network
2.3 Streets

Although the character and function of existing University streets varies greatly, they are mostly corridors for cars, not comfortable places for people. In general, streets separate rather than tie the campus together, and do not promote walking along them.

The section of University Avenue between Rugby Road and the Corner is an exception. It has a wonderful quality and scale that affects the way cars and people interact. It is both beautiful and functional, allowing cars and people to commingle and still feel relatively safe. Important characteristics are its narrow width, low stone walls, and the tree canopy that arches high over the street. University Avenue is a good campus model for streets that accommodate cars and people well.

Jefferson Park Avenue is the antithesis of University Avenue. It is a high speed corridor for cars, which presents a safety hazard for both people and cyclists. It is an uncomfortable place that separates the Health Sciences precinct from the Central Grounds and presents an unfortunate front for the University.

Emmet Street and Alderman Streets are important connectors between the north and west precincts of the University. Emmet Street also serves as an important entry and arrival segment, while Alderman Road is the more direct passage between north and west. Unfortunately, important sections of both of these roads are not bounded by University property, further complicating their improvements.

McCormick Road serves as the major pedestrian corridor. While traffic control measures have been implemented, it still has the appearance and scale of a place for cars. McCormick Road will be the backbone for the Groundswalk, and the Landscape Master Plan will make further recommendations for changing the character of this street as a place for people.

Streets not only need to carry vehicular traffic, but serve a dual function as pedestrian corridors and connectors. This is one of the major short-comings of streets in and around the Grounds today. In addition, streets need to better define and give structure to the Grounds and improve entry and arrival sequences.
2.3 Existing Circulation Places/Conflicts
2.4 Boundaries & Thresholds

One of the stated goals of the Master Plan is that the University should mainly grow within its current boundaries for the foreseeable future. In order to fully understand the implications of this, boundaries and edge conditions are noted and a layer of primary and secondary thresholds or arrival areas identified.

One of the distinctive features of the historic core is the use of low brick walls and colonnades to mark its boundaries and thresholds. Through the course of its expansion, additional layers of intermittent boundaries evolved out of brick and stone. The most notable of these is the low stone wall along the travel lanes at University Avenue. Several stone and brick retaining walls also help to define McCormick Road and Monroe Hill, as well as the cemetery area along Alderman Road. Finally, the low stone walls along Ivy Road just inside the 250 Bypass and the walls along Jefferson Park Avenue serve as markers which help define the outer reaches of the campus.

The railroad underpass at Emmet Street and Beta Bridge on Rugby Road serve as primary thresholds for the northern approaches into the University. From the east, the railroad underpasses along University Avenue and Jefferson Park Avenue mark these thresholds. The approaches from the south and east are less defined along Stadium Road and Ivy Road particularly where they both intersect Alderman. Thresholds and arrival from these directions need better definition and clarity.
2.4 Existing Thresholds
ANALYSIS

3.0 OPEN SPACE

Jefferson’s vision for his University was to promote the widest possible dissemination of knowledge. To do this he modeled his learning environment after the Greeks, which used small groups of students gathered about a professor in both formal and informal settings that best fit the subject matter and circumstances of the time. In the early days of the University, professors lived upstairs in the Pavilions and taught students on the main floor which opened out to the Lawn and gardens.

Recently the University Senate adopted a year-long program to improve the intellectual community of the University. It was noted by a subcommittee of the Senate that the University lacked quality outdoor places for gathering and teaching opportunities of an informal or formal nature.

3.1 Gathering Places

The University is deficient in terms of welcoming outdoor places that encourage informal gathering, conversation, and exchange of ideas.

Nearly perfect places include the Lawn and Range gardens. There are also a number of incomplete places (framework in place but requires tweaking), which have a tremendous potential for enriching the Grounds. As with the historic Central Grounds, gathering places are part of the open space hierarchy of positive outdoor space.

It is anticipated that the creation of places will recognize site-specific needs such as topography, casual seating, and bus shelters designed to provide protection from sun and rain. Although the design vocabulary has not been chosen, a consistent family of materials is anticipated.

Finally, bus stops throughout the University provide an important opportunity for informal gathering places. This is particularly true of the stops along McCormick Road near the Chapel, the major pedestrian crossing at Garrett Hall and the McIntire Amphitheater, and in front of the McMormick dormitories.

3.2 Views and Vistas

There are a number of important views and vistas throughout the University grounds that need to be protected, restored or enhanced.

Ever since the axial views from the Lawn to the distant mountains were obscured by the construction of Cabell Hall, the most dominant views are the ones toward Lewis Mountain.
Many first-time visitors unfamiliar with the University mistake this landmark with Monticello. The most significant view to Lewis Mountain is the axial view from terraces of the Rotunda, down along the walkway to Alderman Library, and the view from the Alderman Library terrace in which the landmark becomes ever more dominant.

The view of Lewis Mountain is also significant from the Athletic precinct and from the Miller Center. Lewis Mountain is visible from the upper portions of the Lambeth Colonnade but is overpowered by the white dome of University Hall. Although not owned by the University, the vistas of Lewis Mountain are an important part of the experience of the Grounds.
Views to Monticello and the southern mountains have been obscured by the buildings of the Health Sciences precinct. Monticello is visible from the upper terraces of Cabell Hall and along a brief opening opposite the evergreen grove along Jefferson Park Avenue. The expansion at Scott Stadium obscures distant views from the student seating area.

Other important views and vistas are:

- The distant mountain views from the northwest corner of Alderman Library Terrace.
- Views to Observatory Hill from McCormick Road.
- From the Law and Darden schools to distant Blue Ridge range.
- South views from the Hereford College dormitory terraces.

There are many secondary but important internal views within the University. Most notable are the ones to the Rotunda which over time have been obscured by plantings. The view as you approach the Rotunda from University Avenue from the west and the ‘Long Walk’ from the east are views which were very prominent in the early period of the University and should be restored.

Other important internal views worth noting are:

- Views along the end of McCormick Road up towards Carr’s Hill. (This view is also partially obscured.)
- View from Carr’s Hill to Lambeth Field. (Also obscured.)
- View of the Law School as one enters the North Grounds from Arlington Boulevard.
- View from McCormick Road to Scott Stadium.
- Views of Clark Park.

Finally, there are several views which are poor or unsightly and are noted for future improvements:

- The bright fluorescent lights of Clemens Library from University Avenue.
- The Cavalier Inn and corner gas stations at University Drive/Ivy Road from Emmet Street.
- Views along Emmet Street of the hotels, restaurants, and fast food establishments.

3.3 Sacred Places

The plan will identify cultural and natural landscapes within the campus that are considered important places or sacred landscapes. These landscapes are considered essential to the character, quality and identity of the Grounds and University. They should be formally recognized and policies should be established for their protection and preservation for future generations.
3.3 Existing Cultural/Natural Landscapes
D. RECOMMENDATIONS

Landscape recommendations emerged from the Analysis and Observation Phases. The seven broad recommendations are organized under three headings which parallel the three areas of Observations.

Part 1.0: Natural Systems covers recommendations related to the importance of the health of woodlands and water to the experience of the University.

Part 2.0: Circulation Systems outlines recommendations for improving the street corridors and the pedestrian and bicycle networks that form the hierarchy of circulation for the Grounds.

Part 3.0: Open Space and Places outlines strategies for enhancing and preserving the quality of open space on the Grounds.

Collectively they form an open framework of landscape corridors that should guide and enrich the growth of the University.
1.0 NATURAL SYSTEMS

1.1 Water Resources/Riparian Recreation

- Link riparian corridors with recreational uses.

Develop a ribbon of riparian recreation associated with Meadow Creek improvements that stretch from Observatory Hill through the lowlands of the University and on to the North Grounds. Recommendations include four components.

- stream restoration
- woodland protection
- recreational fields
- connective trails system

Stream restoration is considered an integral part of effective storm water management. As part of that concept, bringing water back to the surface, where it historically flowed through the University, creates an opportunity to enrich the experiential quality of the place. Meadow Creek and its tributaries form a stream valley corridor linking the Observatory Hill woodlands with Central Grounds and the woods of North Grounds. An investigation is underway regarding the feasibility of daylighting Meadow Creek through the Dell, Nameless Field, and Carr's Hill Field. A combination of stream and woodland preservation will protect the headwaters and floodplain, as well as facilitate reforestation.

The association of water with recreation should be enhanced by trails meandering along restored stream corridors and recreational fields in the low-lying areas of the Grounds. Characterized by quiet retreat, the riparian trails would act as an informal corollary to the urban Groundswalk. The riparian trails would connect the recreational fields of the Grounds with the trails on Observatory Hill and the North Grounds and the Rivanna Trails network around the city.

Other specific recommendations include: increasing shade tree cover of the Grounds, removing the tennis courts and parking area from the Dell, and relocating the basketball courts west of Emmet Street.
1.1 Proposed Water Resources/Riparian Recreation Corridor
1.2 Connected Woodland Corridors

- **Preserve and extend the University's woodlands.**

 Adopt an ethic for the preservation and expansion of the University's woods into connected woodland corridors. Recommendations include three components:

 Preserve and extend Observatory Hill Woods and North Grounds Forest: The woodlands of Observatory Hill are an important part of the University's legacy as part of Jefferson's original land purchase, and they are important to the visual setting and identity of the Grounds. Both the woodlands of Observatory Hill and the North Grounds provide substantial environmental benefits, recreation, research resource, and wildlife habitat.

 Connect Observatory Hill Woodlands with the North Woods: The connection of woodland patches into a continuous corridor would reinforce and enrich both the Groundswalk and riparian recreation. Specifically, the Woodland Corridor would preserve and extend the woods and the forest into a ribbon of mixed native deciduous and evergreen trees through the Dell and across the slopes above Nameless and Carr's Hill Field, connecting to new riparian woodland plantings along Meadow Creek at Lambeth Field.

 Reforest Slopes: Reforested slopes will improve the views of the Grounds from Emmet Street, protect steep slopes from soil erosion, and reduce maintenance associated with mowing.

 Specifically, the Landscape Plan recommends:

 - The development of a forest management program for the preservation and enhancement of Observatory Hill Woodlands and the North Forest, including maintenance plan for removal of invasive exotics;
 - The reduction of turf around the eastern slopes of Observatory Hill in order to return it to a regenerating forest floor where compatible with existing uses;
 - The afforestation of steep slopes above Nameless and Carr's Hill Fields;
 - Afforestation of the eastern slope above Emmet Street between the Visitor's Parking Garage and Kerchof Hall;
 - The afforestation of steep slopes above Nameless and Carr's Hill Fields;
1.2 Proposed Connected Woodland Corridors
2.0 CIRCULATION SYSTEMS

2.1 Pedestrian Paths and Bicycles

- Reinforce the Groundswalk.

Develop a comprehensive pathway system to promote walking and biking within a finely textured network, interwoven with places that promote gathering. The network of existing paths is strong in and around the Central Grounds, but begins to weaken in the West Precinct and elsewhere. The Central Grounds illustrates a model rich with multiple choices of movement that should be emulated throughout the Grounds.

2.1.1 Groundswalk

The upland counterpart to the riparian trails system would be the Groundswalk, the backbone of the pedestrian circulation network and gathering places connecting the West Precinct and the Central Grounds to the Health Sciences Precinct and the North Grounds. Envisioned as a pedestrian promenade, the Groundswalk would restrict car traffic on McCormick Road (allowing service, security, and emergency access), giving preference to pedestrians, mass transit and bicycling. In contrast to the quiet, contemplative riparian trail, the Groundswalk is characterized by high intensity use, hard paving, and urban street furnishing.

Building on existing conditions, the Groundswalk should use a hierarchy of paving systems to help clarify the structure, order, and coherence of the Grounds. The Walk would include a rich texture of pavings, as well as low stone walls that negotiate grade, control circulation, and provide seating. The Walk would be further activated at pivotal points by “events” that create “intermediate goals” and enrich the experience of moving through the Grounds, as well as:

- Further restriction of normal car traffic and narrowing of McCormick Road from Alderman Road to University Avenue, including the development of events that might take the form of small landmarks or gathering places that provide bus shelters, seating and services.

- Street realignment and paved pedestrian crosswalks at University Avenue and Rugby Road;

- Provision of a bridge capable of carrying pedestrians and part of the Groundswalk over Emmet Street near Massie Road.
2.1.1 Proposed Groundswalk

2.1.2 Existing

- Walls
- Special Paving
- Primary Pedestrian Paths
- Secondary Pedestrian Paths
- Limited Vehicular Street
- Bridge Crossings

2.1.3 Proposed

- Walls
- Special Paving
- Primary Pedestrian Paths
- Secondary Pedestrian Paths
- Important Nodes
- Gathering Places
- Limited Vehicular Street
RECOMMENDATIONS

2.1 Emmet Street – Before

2.1 Emmet Street Bridge – After
2.1.2 Riparian Corridor

Expand the richness of the pedestrian network by creating a braided pedestrian promenade that connects the West Precinct to the Central Grounds to the North Grounds through a natural series of pathways along the riparian corridors as well as a well-defined secondary set of sidewalks and pathways.

- Establish a soft walking path from Emmet Street along the Dell stream valley connecting as far up the ravines as possible, tying into the trails of Observatory Hill.

- Where possible, continue the Dell trail along Nameless Field and Carr’s Hill Field, tying back to Emmet Street at the railroad bridge.

- Connect the North Grounds Precinct through Graduate Housing with paths along the swales and intermittent stream along the rear of the unit.

- From the intersection of Massie Street and Emmet Street, continue the trail along the stream north of the University Hall parking lots across Copeley Road into Graduate Housing.
2.1.3 Sidewalks and Secondary Pathways

Extend ribs from the Groundswalk that connect back into the Precincts (particularly Health Sciences.)

- New asphalt paths through the woods to Hereford College and Fontaine Avenue;
- New sidewalks and retaining wall between Alderman Road and McCormick Road Dormitories;
- Improve pathway through McKim Terrace to the Health Sciences Precinct;
- Improvement to asphalt biking/hiking trail on inside curve of Massie Road west of Copeley Road;
- New pathways along the south side of McKim Hall connecting to Lane Road, and overland infill path ways making additional connections to the West Precinct.

- Sidewalk and retaining walls along the north side of Jefferson Park Avenue (where none currently exists).
- Provide paths beyond Jefferson Park Avenue, linking the Medical Research and Health Sciences areas.
- Streetscape improvements on Emmet Street from McCormick Road to Arlington Boulevard;
- Sidewalks and streetscape improvements on Alderman Road and Copeley Road from Stadium Road to Massie Road.

2.1.4 Bicycles

The Landscape Master Plan recommends that current University policies regarding bicycle planning and use be continued, with the exception of the recommendations regarding the use of shared lanes. Specific recommendations for “Bicycle Facilities Improvements” were drafted in May, 1997, by The Charlottesville-Albemarle Bicycle Association. Two important goals include increasing the perceived and real safety of using bicycles in and around the University and discouraging the use of bicycles in pedestrian areas. In addition, five important route priorities were described:

- McCormick Road: As vehicular traffic diminishes, greater emphasis needs to be placed on safer cycling within this central corridor.
- Hospital Drive/Cabell Hall Route: Not well-known and little used by the cycling community, the use of lane markings as well as traffic calming measures along Jefferson Park Avenue would improve usage and safety.
- Alderman Road: It will require the cooperation of the city in order to connect one of the most heavily used corridors of the University, Massie Road to McCormick Road. Some existing portions Alderman Road are wide enough to accommodate bike lanes.
- Massie Road: Improve safety of off- and on-road bicycle paths in North Grounds.
2.1.4 Bikeways

Legend

Existing
- Dedicated Bike Lanes on Roadways
- Walk-Your-Bike Zone
- Problem Areas

Imminent
- Dedicated Bike Lanes on Roadways

Proposed (Future)
- Dedicated Bike Lanes on Roadways
- Separated Bike Path
- Bikeway Shared with Limited Vehicular

2.1.4 Bikeways
RECOMMENDATIONS

• **University Avenue:** Complete the section between Rugby Road and Emmet Street which appears wide enough to accommodate the addition of bike lanes. However, the section between Rugby Road and the Corner needs extensive study and cooperation between the City and University due to the numerous difficult existing conditions and areas of pedestrian conflicts.

Routes within pedestrian areas also need to be clearly designated. In a practical sense, if bicycling is to be encouraged, it needs to be accommodated in a safe and effective manner. Bicycles can safely commingle with cars and pedestrians if the following criteria are met:

- Bike paths should be clearly marked with an easily recognizable surface treatment and graphics, at least 4' wide within streets and vehicular rights of way,

- Bike paths within the University run along the major walks only and are clearly marked by a separate surface, so pedestrians know when they are stepping into the realm of bikes.

- Connect these paths to designated and marked bike rack areas, and clearly designate areas as ‘No Bike’ or ‘Walk Your Bike Only.’ For example all brick and/or stone walkways should be off limits to bike traffic within the University, as well as the pedestrian-only zones of the Academical Village, and other Sacred Landscapes.

2.2 SHADED STREET CORRIDORS

– *Enhancing the streets for people.*

At the University of Virginia, streets are an untapped resource of great potential. Streets help create memorable images that contribute to a sense of arrival. As such, they are a critical component of the definition and character of the boundaries and thresholds of the University.

In addition, they can and should reinforce the clarity of the structure and order of the Grounds. Closely tied to topography, the streets of the University delineate its land form. Specifically, McCormick Road rides the ridge and Emmet Street follows the Meadow Creek stream valley. Jefferson Park Avenue bands the south side of the Central Grounds hillock, University Avenue slips up the saddle between Central Grounds and Carr’s Hill, and Massie Road provides the primary structuring device for the North Grounds. Collectively, they are a fundamental component of the mental image of the structure and order of the Grounds.

More importantly, the streets are the primary circulation arteries for people in cars or on foot. Conflicts between pedestrians and automobiles should be eliminated where possible. For example, narrow sidewalks restrict pedestrians along McCormick Road, the primary pedestrian street of the University. Other conflicts are identified at Alderman Road, crossing University Avenue at Rugby Road, crossing Emmet Street at Massie Road, and crossing Jefferson Park Avenue at the B-1 lot.

Shaded street corridors could compliment and enrich the Groundswalk and riparian corridor, by providing not only structure but also image, clarity, and comfort to pedestrians. Continuous walkways and consistent street tree plantings would significantly contribute to improved streets, which would, in turn, encourage walking and bicycling.

Wherever possible the University should work with utility companies to place power lines underground, providing opportunities for street trees and development of streetscape. Street tree plantings should build upon the existing character, quality, and identity of each street.
Recommendations for the University’s primary streets are as follows:

2.2.1 Emmet Street

- Work with the City to plant the median with flowering and ornamental trees, beginning at Barracks Road and continuing to Massie Road.

- Restore the natural woodland edge at Arlington Road (east side), Copeley Road to Massie Avenue (west side), and Lambeth Field Dormitories (east side) including the removal of invasive species such as aralia. Supplement the native shade tree composition with new plantings that pull the forest edge out to the street.

- Establish native flowering understory drifts, such as redbud and amelanchier, along the open woodland edges.

- Retain the informal tree line (tulip poplar and bald cypress) and turf at Lambeth House supplementing it with riparian plantings.
RECOMMENDATIONS

2.2.2 University Avenue

Emmet to Rugby Road Section:

- On the uphill portion of University Avenue, replicate the informal character of the mixed deciduous and evergreen plantings on Carr’s Hill along the shoulder and down slopes to Nameless Field. Replace the grass slope with mixed woodland and ground cover, with lowland species (Acer) at the base and mesic species (Quercus) on the upslopes.

Rotunda to 14th Street Section:

- Retain the character of the deciduous/evergreen edge, including spruce, ash and sycamore, and allowing trees to be lost by natural attrition in order to open views to the Rotunda.

2.2.3 McCormick Road

Plantings should combine the staccatic rhythm of oak and ash species with informal woodland and tree and turf plantings. Specifically moving from Alderman Road to University Avenue:
2.2 Shaded Street Corridors

LEGEND
- Woodlands
- Red Maple
- Tulip Poplar
- Oak
- Taxodium
- Lawn & Trees
- Existing Conifers
- Street Trees
- Southern Magnolia
- White Pine
- Ash Species
- Oak Species
- Sweet Gum
- Plane Tree

Median: Flowering Trees
RECOMMENDATIONS

- Extend the deciduous woodland plantings with ground cover or leaf litter (where appropriate) from Observatory Hill along McCormick at Gilmer Hall;

- Reinforce the staccatic planting of oak species to Clark Hall;

- Expand the trees and turf plantings at Monroe Hall and reflect same on the southeast side of the street;

- Retain the oak and ash plantings along the West Range and dovetail with tree grove plantings at Alderman Quad.

2.2.4 Jefferson Park Avenue

- Infill existing plantings with an even mix of evergreen and deciduous species focusing on the slopes on both sides of the street. Along Jefferson Park Avenue south of its intersection with Emmet Street, work with the City to expand the flowering median plants with redbuds.

2.2.5 Massie Road

- Combine the regular rhythm of plane trees, oaks and sweet gums, while preserving and managing the woodlands on the inside curve. Specifically:

 - Underground overhead utilities on the west side of the street.

 - Continue the plane trees from Emmet Street to Alderman Avenue.

 - Transition from red oak to sweet gum on the south side, maintaining woodland on the inside curve of the road.

 - Reforest the triangle at Arlington Road and continue with oaks down to the park.

2.2.6 Alderman Road

- Replicate the use of London plane trees initiated with the stadium project.
2.3 THRESHOLDS & ARRIVAL

– Enriching the entry/arrival sequence.

Clarifying the boundaries of the Central Grounds and enriching the sequence of thresholds that define the approach routes to it will improve the experience of entering the University and clarify the definition of its boundaries.

The entry/arrival to the Grounds is and should remain incremental. One passes through a sequence of softly defined thresholds made of various combinations of gates, walls, woods, bridges, water, and plantings that collectively define the entry experience. A real sense of arrival occurs upon reaching the Central Grounds, in particular upon entering the Lawn.

The series of thresholds that define the entry/arrival experience should be reinforced using the full palette of materials currently available. In addition, the definition of the boundaries of the Central Grounds should be clarified by extending the low stone wall that lines University Avenue (at the Rotunda, the Corner, and Carr’s Hill) with a new stone wall along Emmet Street and Jefferson Park Avenue to create a “band” of stone that defines the perimeter of the Central Grounds and becomes part of the identity of the University. Specifically:

- Extend the existing stone wall along the north side of University Avenue down to Carr’s Hill field and on the east side of Emmet Street;
- Extend the existing retaining wall at Ivy Street and Emmet Street to Sprigg Lane;
- Build a new stone wall along the east side of Emmet Street from the tennis courts to the McCormick Road bridge;
- Build a new stone wall along the North side of Jefferson Park Avenue in conjunction with the new sidewalk.

2.3.1 Emmet Street

Enrich the sequence of entry to the Grounds, through its six principle arrival routes, by building on the composition of elements that create a series of entry thresholds and collectively define the boundaries of the University.

Specifically:

- Underground overhead utilities.
- Plant median from Barracks Road to Arlington Road in cooperation with City/State (see street recommendations).
- Restore woodlands on east side of Emmet Street at Arlington Road and recognize potential of this intersection as future gate to the University.
- Construct new stone walls with terminal piers and restore woodlands from Copeley Road to Massie Road.
- Use the Groundswalk bridge near Massie Road as a threshold/gateway to Grounds.
- Expand Meadow Creek to improve the visibility of the creek from Emmet Street.
2.3.2 Arlington Boulevard at North Grounds

- Construct stone/brick entry piers and walls from University property to Massie Road at the Law School.

2.3.3 North Grounds Connector (future)

- Recognize the potential importance the Connector as an entry to the University. Design the connector to enhance the experience of entering through a woodland and use a standard palette of materials to enrich identity of the Grounds.

2.3.4 Ivy Road

- Enhance the University’s identity at the Children’s Medical Center with the addition of flowering understory trees inside the stone wall.
- Advance current proposals for “Ivy Road Design Plan” improvements as developed by the County, City, VDOT, and the University including introduction of shared bike lanes, additional sidewalks, improved plantings, upgraded signage, lighting and furniture, and undergrounding of overhead utilities.
- Construct low stone walls flanking Ivy Road from Alderman Road to Emmet Street.
2.3 Entries & Arrivals

NOTES
Series of soft thresholds made of:
- Walls
- Woods
- Gates
- Bridges
- Plantings
- Water
2.3.5 Stadium Road

- Make improvements to the intersection at Alderman including improvements to the adjacent woodlands, reassessment of the storm water detention pond and terminal piers. Retain the four way stop.
- Use low stone retaining wall and evergreen plantings along the north side of Stadium Road to Emmet Street.

2.3.6 Jefferson Park Avenue

- Use a low stone retaining wall along the north side of Jefferson Park Avenue (as discussed above) and plant the slope above (at the base of the Mathematics/Astronomy Building and area to the east) with a mix of deciduous and evergreen woodland plantings (as noted in “Streets”.)

2.3.7 West Main Street

- Recognize Clark Park as an important portal to the University.
- Improve the “skirt” of the Senff Gates to facilitate handicap access and reveal more of stone base of gates.

3.0 OPEN SPACE AND SPECIAL PLACES

3.1 Places

–Enrich the gathering spaces of the University.

The expansion of the nature and number of gathering places reinforces the Grounds as a landscape for learning, teaching, interdisciplinary exchange, and reflection. This will serve to enrich the learning process by allowing diverse contact among students and faculty colleagues to promote the free exchange of ideas.

These gathering places should be distributed throughout the University and organized along lines of circulation. They should be diverse in character and function. Places should include the types listed below. Places that fulfill multiple functions are most successful:

- Ceremony
- Gathering
- Play
- Retreat
- Passage

Concentrate places of gathering along the Groundswalk or other circulation paths.

Specific site improvements include:

3.1.1 Central Grounds

- Amphitheater – implement recommendations for planting improvements.
- Hume Fountain – complete original plans.
- Newcomb Hall Terraces – design and construct improvements with shade.
- Clark Hall – build shelter, including seating and services, and bus stop.
- Area behind Special Collection Library – improve existing garden.
- Crossing near Chapel – improve pedestrian crossing and provide bus shelter.
- South front of Chapel – expand paving to accommodate circulation and events.
- Rotunda Front Terrace – improve as recommended in the Rotunda precinct plan.
- Garrett Hall Terrace – construct shelter with seating and services.
- Clemons Library Terrace – provide shaded perimeter with seat wall and lawn panel.
RECOMMENDATIONS

3.1.2 Health Sciences

- McKim Terrace – plant additional shade trees and expand seating; replace lawn with paved terrace.
- Behind McKim Hall – remove trailers and create a garden seating area under existing pines.
- Terraces of McLeod Hall/Nursing School – explore improvements to create friendlier outdoor space.

3.1.3 West Precinct

- Walkway west of Thornton Hall/Engineering School – add low stone walls to provide seating, negotiate grades and clarify circulation.
- Terrace between Chemistry Building and Gilmore Hall – provide structure such as a trellis to frame views and provide shade and seating, and seating at southern edge; replace concrete with brick paving.
- McCormick Road Dorms – construct bus shelters.
- Area Outside the Castle Cafe – improve seating and landscaping.

3.1.4 Miscellaneous Areas

- Along riparian trails – provide small seating areas.
3.2 SACRED LANDSCAPES

–Preserving and enhancing the legacy of the University.

Identify and insure the future vitality of natural and cultural landscapes considered to be “sacred”. Sacred landscapes are those that are essential to the character, quality and identity of the Grounds.

Set as a policy of the University to define sacred landscapes or areas of the Grounds that need to be preserved and sustained as instrumental to the character and quality of the place, especially the first tier of areas such as:

• The Lawn and Pavilion Gardens
• Monroe Hill
• The Cemetery
• Observatory Hill Woodlands

as well as the Second Tier Sacred Landscapes of:

• The Dell
• Lambeth House and Garden
• Lambeth Colonnade and Field
• Morea
• Miller Center
• Amphitheater
• Mad Bowl
• North Woods
• Carr’s Hill
• Clark Park

The following areas that have a high potential to become Sacred Landscapes:

• Carr’s Hill Field
• Nameless Field
• Meadow Creek along Emmet Street
• Woods at Emmet and Copeley
• Views to Lewis Mountain and Monticello
3.2 Sacred Landscapes